Ultra-Bright X-rays Beams from Laser Plasma Accelerators

nature but the second s

All-optical Compton gamma-ray source

Victor Malka

Laboratoire d'Optique Appliquée

ENSTA ParisTech – Ecole Polytechnique – CNRS PALAISEAU, France

victor.malka@ensta.fr

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

http://loa.ensta.fr/

erc

UMR 7639

mercredi 4 décembre 13

X rays source with Laser Plasma accelerators

Common features: Collimated beams (mrad) Femtosecond duration (few fs) Micron source size High peak brightness (>10²⁰ ph/s/mm²/mrad²)

UMR 7639

naturally synchronized (ideal for pump-probe experiments)
compacts and useful for small scale laboratories

💛 Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) 🔤

Moving charge radiation

The laser wakefield

V. Malka et al., Science 298, 1596 (2002)

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

http://loa.ensta.fr/

UMR 7639

ÉCOLE

POLYTECHNIQUE ParisTech

Betatron radiation produced in LPA

- Experimental characterization
- Electron-X rays beams correlations
- Diagnostics for LPA
- Single shot contrast imaging
- All optical Compton gamma rays source
 - Principle
 - Experimental results
- Bremsstrahlung gamma rays source
 - Principle
 - Experimental results
- Conclusion and perspectives

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

- F

Betatron radiation produced in LPA

- Experimental characterization
- Electron-X rays beams correlations
- Diagnostics for LPA
- Single shot contrast imaging
- All optical Compton gamma rays source
 - Principle
 - Experimental results
- Bremstralhung gamma rays source
 - Principle
 - Experimental results
- Conclusion and perspectives

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

Laser "Salle Jaune"

Ti:sapphire CPA laser 1.0 J / 30 fs - 10 Hz

onference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

http://loa.ensta.fr/

UMR 7639

Betatron radiation properties

Spatial distribution of the emitted radiation

Cone aperture: $\vartheta_x = K/\gamma$ ~50 mrad for K = 10 and 100 Mev electrons

Cone width: $9_{Y} = 1/\gamma \sim 5 \text{ mrad}$

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) 🔯 👔 👔

UMR 7639

INSTA

A more precise source size estimation

C

ÉCOLE POLYTECHNIQUE ENSTA

UMR 7639

Experimental profiles

Calculated profiles

Electron orbits

A more precise source size estimation

Betatron signal variation with density

C

ENSTA

Femtosecond x-ray diffraction: Non thermal melting (InSb)

Estimation of the x-ray pulse duration: results

C

ENSTA

Colliding Laser plasma accelerator and Betatron

In the relativistic regime, electrons oscillate at a speed close to the speed of light : $a_0 = \frac{eA}{m_ec}$

- The Laplace force is non negligible and electron dynamic is non linear.
- The ponderomotive force $-\vec{\nabla}a_0^2$ excites the plasma wave.

- This excitation is efficient if : $\tau \sim \pi \omega_p^{-1}$

- The excited plasma wave amplitude is large and has a non linear behavior if : $a_0\gtrsim 1.$

J. Faure et al., Nature 444, 737 (2006)

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

Colliding Laser plasma accelerator and Betatron

In the relativistic regime, electrons oscillate at a speed close to the speed of light : $a_0 = \frac{eA}{m_ec}$

- The Laplace force is non negligible and electron dynamic is non linear.

- The ponderomotive force $-\vec{\nabla}a_0^2$ excites the plasma wave.

- This excitation is efficient if : $\tau \sim \pi \omega_p^{-1}$

- The excited plasma wave amplitude is large and has a non linear behavior if : $a_0\gtrsim 1.$

J. Faure et al., Nature 444, 737 (2006)

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

Colliding Laser plasma accelerator and Betatron

In the relativistic regime, electrons oscillate at a speed close to the speed of light : $a_0 = \frac{eA}{m_ec}$

- The Laplace force is non negligible and electron dynamic is non linear.
- The ponderomotive force $-\vec{\nabla}a_0^2$ excites the plasma wave.

- This excitation is efficient if : $\tau \sim \pi \omega_p^{-1}$

- The excited plasma wave amplitude is large and has a non linear behavior if : $a_0\gtrsim 1.$

UMR 7639

J. Faure et al., Nature 444, 737 (2006)

^{^~}Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) 📫 📷

Electron and X ray correlation (LOA experiments)

Electron and X ray correlation (LOA experiments)

UMR 7639

COLE POLYTECHNIQU

ENSTA

Electron and X ray correlation : comparison

ENSTA

The best agreement is obtained for :

Electron & Xray correlation: divergence and charge

Divergence (FWHM) the X betatron signal with the electron beam energy:

mercredi 4 décembre 13

X ray Phase Contrast Radiography

• Absorption contrast

Contrast is due to the absorption difference in the object

It works only with object with important absorption difference

• Phase contrast

Interferences can reveal object interfaces

Biological objects have phase contrast 1000 times higher than absorption contrast

It requires a very high spatial coherence (10's microns) : $d = \lambda R/2\pi\sigma$

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) 📑

http://loa.ensta.fr/

UMR 7639

X ray Phase Contrast Radiography: Experiments

Parameters of the source :

- $E_c = 12.3 \text{ keV}$
- 2.2×10⁸ photons/0.1%BW/sr/shot at 10 keV
- N = 10⁹ photons in 28 mrad (FWHM) divergence beam

S. Fourmaux et al., Opt. Lett. 36, 2426 (2011)

⁴ Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

http://loa.ensta.fr/

UMR 7639

X ray Phase Contrast Radiography: Results

Bee contrast image :

- Contrast of 0.68 in single shot.
- Very tiny details can be observed in single shot that disappear in multi shots.

UMR 7639

Betatron radiation produced in LPA

- Experimental characterization
- Electron-X rays beams correlations
- Diagnostics for LPA
- Single shot contrast imaging
- All optical Compton gamma rays source
 - Principle
 - Experimental results
- Bremstralhung gamma rays source
 - Principle
 - Experimental results
- Conclusion and perspectives

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

Inverse Compton Scattering

Doppler upshift : high energy photons with modest electrons energy : $\omega_x = 4\gamma^2 \omega_0$

For example : 20 MeV electrons can produce 10 keV photons 200 MeV electrons can produce 1 MeV photons

The number of photons depends on the electron charge N_e and a_0^2 : $N_x \propto a_0^2 \times N_e$

Duration (fs), source size (μm) = electron bunch length and electron beam size

Spectral bandwidth : $\Delta E/E \propto 2\Delta \gamma/\gamma, \gamma^2 \Delta \theta^2$

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013) 🔯 🔬 🔗

UMR 7639

Inverse Compton Scattering : New scheme

A single laser pulse

- A plasma mirror reflects the laser beam
- The back reflected laser collides with the accelerated electrons
- No alignement : the laser and the electron beams naturally overlap

Save the laser energy !

Inverse Compton Scattering : Experimental set-up

Inverse Compton Scattering : Experimental results

Inverse Compton Scattering : Experimental results

mercredi 4 décembre 13

Inverse Compton Scattering : Experimental results

mercredi 4 décembre 13

Inverse Compton Scattering : Compton Spectra

- About 10⁸ ph/shot, a few 10⁴ ph/shot/0.1%BW@100 keV
- Broad electron spectrum => broad X ray spectra
- Brigthness: 10²¹ ph/s/mm²/mrad²/0.1%BW @100 keV

K.Ta Phuoc et al., Nature Photonics, May 2012

UMR 7639

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

Inverse Compton Scattering : Source size

http://loa.ensta.fr/

UMR 7639

Betatron radiation produced in LPA

- Experimental characterization
- Electron-X rays beams correlations
- Diagnostics for LPA
- Single shot contrast imaging
- All optical Compton gamma rays source
 - Principle
 - Experimental results
- Bremstralhung gamma rays source
 - Principle
 - Experimental results

Conclusion and perspectives

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

Some examples of applications : radiography

Non destructive dense matter inspection High resolution radiography of dense object with a low divergence, point-like electron source

Cut of the object in 3D Spherical hollow object in tungsten with sinusoidal structures etched on the inner part. 400 μm γ source size 2005

50 μm γ source size 2010

Y. Glinec et al., PRL **94**, 025003 (2005) A. Ben-Ismail et al., Nucl. Instr. and Meth.A **629** (2010) A. Ben-Ismail et al., App. Phys. Lett. **98**, 264101 (2011)

^d Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

Application to Non Destructive Control

Artistic view of non destructive control machine

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

erc

mercredi 4 décembre 13

X rays Source with Laser Plasma Accelerators : Outline

- F

Betatron radiation produced in LPA

- Experimental characterization
- Electron-X rays beams correlations
- Diagnostics for LPA
- Single shot contrast imaging
- All optical Compton gamma rays source
 - Principle
 - Experimental results
- Bremstralhung gamma rays source
 - Principle
 - Experimental results
- Conclusion and perspectives

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

Laser plasma accelerators can deliver high quality X ray beams

(i) Betatron : 10⁸-10⁹ ph/shot - fs - micron - 10's keV - 10's mrad

(ii) Compton : 10⁸-10⁹ ph/shot - fs - micron - 100's keV 10⁴ photons/shot/0.1% BW @ 100 keV (10 000 brighter than existing sources)

(iii) Bremsstrahlung: 10⁵-10⁶ ph/shot - ps - 10's micron - 10's MeV

Conclusion and Perspectives

- Betatron radiation:

Fully characterized, used for first applications

- → High repetition rate keV source
- \mapsto High energy radiation: 100s keV
- All optically driven Compton x-ray source:

First demonstration in the hard x-ray range

- → Produce x-ray beams at higher repetition rates (compact lasers).
- \mapsto Produce tunable monochromatic fs x-ray/gamma-ray beams.

- Applications:

Ultrafast x-ray absorption, diffraction experiments, radiography

- \mapsto keep developing these applications
- \mapsto Applications for ICF under consideration

Femtosecond X-rays from laser plasma accelerators S. Corde *et al.*, Review of Modern Physics, 85, 1, 2013

Conference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639

mercredi 4 décembre 13

Produce a nearly monochromatic radiation source: from a few keV to a few MeV

To do so we will use monoenergetic electrons produced from a laser plasma accelerator

Expected x-ray spectra

Sebastien Corde, Kim Ta Phuoc, Cédric Thaury, Agustin Lifschitz, Romuald Fitour, Antoine Rousse, Stephane Sebban Laboratoire d'Optique Appliquée, ENSTA ParisTech – Ecole Polytechnique – CNRS, Palaiseau, France

Sylvain Fourmaux, Jean-Claude Kieffer INRS-EMT - Advanced Laser Light Source, Quebec, Canada

Xavier Davoine, Erik Lefebvre CEA/DAM/DIF, Arpajon, France

^CConference on High Intensity Laser and Attosecond Science in Israel, Tel-Aviv, December 2-4 (2013)

UMR 7639